A Systematic Review on the Generation of Organic Structures through Additive Manufacturing Techniques

Author:

Bernadi-Forteza Alex1ORCID,Mallon Michael2ORCID,Velasco-Gallego Christian1,Cubo-Mateo Nieves1ORCID

Affiliation:

1. Research Group ARIES, Higher Polytechnic School, Nebrija University, 28040 Madrid, Spain

2. European Space Research and Technology Centre, European Space Agency, 2201 AZ Noordwijk, The Netherlands

Abstract

Additive manufacturing (AM) has emerged as a transformative technology in the fabrication of intricate structures, offering unparalleled adaptability in crafting complex geometries. Particularly noteworthy is its burgeoning significance within the realm of medical prosthetics, owing to its capacity to seamlessly replicate anatomical forms utilizing biocompatible materials. Notably, the fabrication of porous architectures stands as a cornerstone in orthopaedic prosthetic development and bone tissue engineering. Porous constructs crafted via AM exhibit meticulously adjustable pore dimensions, shapes, and porosity levels, thus rendering AM indispensable in their production. This systematic review ventures to furnish a comprehensive examination of extant research endeavours centred on the generation of porous scaffolds through additive manufacturing modalities. Its primary aim is to delineate variances among distinct techniques, materials, and structural typologies employed, with the overarching objective of scrutinizing the cutting-edge methodologies in engineering self-supported stochastic printable porous frameworks via AM, specifically for bone scaffold fabrication. Findings show that most of the structures analysed correspond to lattice structures. However, there is a strong tendency to use organic structures generated by mathematical models and printed using powder bed fusion techniques. However, no work has been found that proposes a self-supporting design for organic structures.

Funder

European Space Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3