Author:
Wang Chen,Ma Xuehong,Wang Gang,Li Guitong,Zhu Kun
Abstract
AbstractSoil O2 dynamics have significant influences on greenhouse gas emissions during soil management practice. In this study, we deployed O2-specific planar optodes to visualize spatiotemporal distribution of O2 in soils treated with biological soil disinfestation (BSD). This study aimed to reveal the role of anoxia development on emissions of N2O and CH4 from soil amended with crop residues during BSD period. The incorporation of crop residues includes wheat straw only, wheat straw with biochar and early straw incorporation. The anoxia in soil developed very fast within 3 days, while the O2 in headspace decreased much slower and it became anaerobic after 5 days, which was significantly affected by straw and biochar additions. The N2O emissions were positively correlated with soil hypoxic fraction. The CH4 emissions were not significant until the anoxia dominated in both soil and headspace. The co-application of biochar with straw delayed the anoxia development and extended the hypoxic area in soil, resulting in lower emissions of N2O and CH4. Those results highlight that the soil O2 dynamic was the key variable triggering the N2O and CH4 productions. Therefore, detailed information of soil O2 availability could be highly beneficial for optimizing the strategies of organic amendments incorporation in the BSD technique.
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 2058–2072. https://doi.org/10.1098/rsta.2010.0341 (2011).
2. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125. https://doi.org/10.1126/science.1176985 (2009).
3. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., 2007. Climate change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers.
4. Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Climate Change 2, 410–416. https://doi.org/10.1038/nclimate1458 (2012).
5. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philos. Trans. R. Soc. London B Biol. Sci. 368, 2177 (2013).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献