Cover crop residue decomposition triggered soil oxygen depletion and promoted nitrous oxide emissions

Author:

Lussich Facundo,Dhaliwal Jashanjeet Kaur,Faiia Anthony M.,Jagadamma Sindhu,Schaeffer Sean M.,Saha Debasish

Abstract

AbstractCover cropping is a promising strategy to improve soil health, but it may also trigger greenhouse gas emissions, especially nitrous oxide (N2O). Beyond nitrogen (N) availability, cover crop residue decomposition may accelerate heterotrophic respiration to limit soil O2 availability, hence promote N2O emissions from denitrification under sub-optimal water-filled pore space (WFPS) conditions that are typically not conducive to large N2O production. We conducted a 21-day incubation experiment to examine the effects of contrasting cover crop residue (grass vs legume) decomposition on soil O2 and biogeochemical changes to influence N2O and CO2 emissions from 15N labeled fertilized soils under 50% and 80% WFPS levels. Irrespective of cover crop type, mixing cover crop residue with N fertilizer resulted in high cumulative N2O emissions under both WFPS conditions. In the absence of cover crop residues, the N fertilizer effect of N2O was only realized under 80% WFPS, whereas it was comparable to the control under 50% WFPS. The N2O peaks under 50% WFPS coincided with soil O2 depletion and concomitant high CO2 emissions when cover crop residues were mixed with N fertilizer. While N fertilizer largely contributed to the total N2O emissions from the cover crop treatments, soil organic matter and/or cover crop residue derived N2O had a greater contribution under 50% than 80% WFPS. Our results underscore the importance of N2O emissions from cover crop-based fertilized systems under relatively lower WFPS via a mechanism of respiration-induced anoxia and highlight potential risks of underestimating N2O emissions under sole reliance on WFPS.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3