Response of Strawberry Fruit Yield, Soil Chemical and Microbial Properties to Anaerobic Soil Disinfestation with Biochar and Rice Bran

Author:

Song Zhaoxin1,Yan Dongdong1ORCID,Fang Wensheng1,Zhang Daqi1,Jin Xi2,Li Yuan13,Wang Qiuxia13,Wang Guirong1,Li Qingjie4ORCID,Cao Aocheng13

Affiliation:

1. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Hebei Technology Innovation Center for Green Management of Soil-Borne Diseases, Baoding University, Baoding 071000, China

3. Beijing Innovation Consortium of Agriculture Research System, Beijing 100193, China

4. Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Organic materials added to soil create anaerobic conditions that can reduce soil-borne pathogens that reduce the yield and quality of agricultural crops. Anaerobic soil disinfestation (ASD) requires relatively large quantities of readily available, inexpensive organic materials. We evaluated the impact of ASD with rice bran and biochar organic materials on changes to the soil’s physicochemical properties, microbial taxa, and strawberry fruit yield. We found that the organic materials applied at different dose rates significantly increased the control effect of the soil Fusarium spp. and Phytophthora spp. to 69–99% and 63–98%, respectively. In addition, ASD significantly increased soil organic matter and ammonium nitrogen contents. Strawberry yield also increased significantly after ASD treatment with biochar applied at 10 t/ha, which was positively correlated with increased soil nutrients and a significant reduction in pathogens. High-throughput gene sequencing showed that ASD significantly increased the abundance of some beneficial microorganisms such as Bacillus, Pseudomonas, and Mortierella, possibly due to changes in the soil’s physicochemical properties that favored their survival. We found for the first time that biochar applied at 10 t/ha could create anaerobic conditions that effectively reduced soil-borne pathogens and increased crop yield.

Funder

Beijing Innovation Consortium of Agriculture Research System

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3