Author:
Hsieh Hsueh-Han,Weerathunga Veran,Weerakkody W. Sanjaya,Huang Wei-Jen,Muller François L. L.,Benfield Mark C.,Hung Chin-Chang
Abstract
AbstractRecent research has revealed that shrimp sensory quality may be affected by ocean acidification but we do not exactly know why. Here we conducted controlled pH exposure experiments on adult tiger shrimp, which were kept in 1000-L tanks continuously supplied with coastal seawater. We compared survival rate, carapace properties and flesh sensory properties and amino acid composition of shrimp exposed to pH 7.5 and pH 8.0 treatments for 28 days. Shrimp reared at pH 7.5 had a lower amino acid content (17.6% w/w) than those reared at pH 8.0 (19.5% w/w). Interestingly, the amino acids responsible for the umami taste, i.e. glutamate and aspartic acid, were present at significantly lower levels in the pH 7.5 than the pH 8.0 shrimp, and the pH 7.5 shrimp were also rated as less desirable in a blind quality test by 40 volunteer assessors. These results indicate that tiger shrimp may become less palatable in the future due to a lower production of some amino acids. Finally, tiger shrimp also had a lower survival rate over 28 days at pH 7.5 than at pH 8.0 (73% vs. 81%) suggesting that ocean acidification may affect both the quality and quantity of future shrimp resources.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).
2. International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).
3. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
4. Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).
5. Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献