Sulfate erosion investigation on FRP-confined concrete in cold region

Author:

Ji Yongcheng,Zou Yunfei,Li Wei

Abstract

AbstractFiber-reinforced polymer (FRP) confined concrete is regarded as an innovative and economical approach for structural repairation. Two typical materials [carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP)] are selected in this study to investigate the concrete strengthen effect in a severe environment. The resist ability of FRP-confined concrete is discussed when subjected to coupled erosion between sulfate erosion and freeze–thaw cycles. Electron microscopy examines concrete's surface and interior degradation during coupled erosion. The corrosion degree and principle of sodium sulfate are analyzed using pH, SEM electron microscope, and EDS energy spectrum. The axial compressive strength test is used to evaluate the reinforcement of the FRP-confined concrete column, and the stress–strain relationship for various FRP-confined techniques in a coupled erosion environment is obtained. The error analysis is performed to calibrate the experimental test result using four existed prediction models. All observations indicate that the deterioration process of FRP-confined concrete is complicated and dynamic under coupled effect. Sodium sulfate initially increases the initial strength of concrete. However, subsequent freeze–thaw cycles may aggravate concrete fractures, while sodium sulfate further degrades the strength of concrete through the cracking development. A precise numerical model is presented to simulate the stress–strain relationship, which is critical for the design and life cycle assessment of FRP-confined concrete.

Funder

The 67th Postdoctoral Foundation in China

The Heilongjiang Province Postdoctoral Foundation in China

The Heilongjiang Province Studying Abroad Student (Startup Class) Scholarships

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3