Degradation of basalt FRP bars in alkaline environment

Author:

Wu Gang,Wang Xin,Wu Zhishen,Dong Zhiqiang,Xie Qiong

Abstract

AbstractThis paper investigates the degradation of basalt fiber reinforced polymer (BFRP) bars used for concrete construction in an alkaline environment. The relationships between tensile strength, elastic modulus, shear strength and moisture absorption rate over time are analyzed using a tension test, short-beam test and moisture absorption weighting. The tensile strength degradation of BFRP bars was further compared with that of Glass FRP (GFRP) bars in the literature. The results indicated that BFRP bars exhibit relatively good resistance to alkaline corrosion, maintaining more than 60% of their original strength after 9 weeks at 55°C in an alkaline solution. The moisture absorption of BFRP bars conforms to Fick’s law, which shows that the degradation mechanism is controlled by matrix and related interface degradation. This finding is supported by comparison with the shear strength degradation trend. Compared to GFRP bars under similar alkaline conditions, BFRP bars exhibit a similar degradation rate during the initial phase, but maintain higher tensile strength and strength retention over time.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference38 articles.

1. ST Westport;Tsai,1985

2. Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites

3. Mechanical Properties of Steel-FRP Composite Bars (SFCBs) and Performance of SFCB Reinforced Concrete Structures

4. Guide Test Methods for Fiber - Reinforced Polymers for Reinforcing or Strengthening Structures Institute;FRPs;Concrete American Concrete,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3