Nonlinear Modeling of Contact Stress Distribution in Thin Plate Substrates Subjected to Aspect Ratio

Author:

Lv Chao1,Wei Huixin1,Lan Zhiwen1,Wu Ping1

Affiliation:

1. Institute of Engineering Mechanics, Nanchang University, Nanchang 330031, China

Abstract

The foundation substrate’s basal contact stresses are typically thought to have a linear distribution, although the actual form is nonlinear. Basal contact stress in thin plates is experimentally measured using a thin film pressure distribution system. This study examines the nonlinear distribution law of basal contact stresses in thin plates with various aspect ratios under concentrated loading, and it establishes a model for the distribution of contact stresses in thin plates using an exponential function that accounts for aspect ratio coefficients. The outcomes demonstrate that the thin plate’s aspect ratio significantly affects how the substrate contact stress is distributed during concentrated loading. The contact stresses in the thin plate’s base exhibit significant nonlinearity when the aspect ratio of the test thin plate is greater than 6~8. The aspect ratio coefficient-added exponential function model can better optimize the strength and stiffness calculations of the base substrate and more accurately describe the actual distribution of contact stresses in the base of the thin plate compared to linear and parabolic functions. The correctness of the exponential function model is confirmed by the film pressure distribution measurement system that directly measures the contact stress at the base of the thin plate, providing a more accurate nonlinear load input for the calculation of the internal force of the base thin plate.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Displacement field and stress field of circular foundation board on elastic semi-space foundation;Li;J. Nanchang Univ. (Sci. Ed.),2014

2. A novel computational method for dynamic analysis of flexible sandwich plates undergoing large deformation;Zhang;Eng. Compos. Struct.,2021

3. Research on the distribution of base reaction force and simplified design method for extended foundation with large aspect ratio;Liang;J. Sichuan Build. Sci. Res.,2019

4. Mo, H., and Yang, X. (2003). Foundation Engineering, National Defense Industry Press. [1st ed.].

5. Experimental Investigation on Shear-Stress Partitioning for Flexible Plants with Approximately Zero Basal-to-Frontal Area Ratio in a Wind Tunnel;Kang;Bound.-Layer Meteorol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3