Author:
Roy Subhas Chandra,Shil Pankaj
Abstract
AbstractRice (Oryza sativa L) is a most important staple food crop of the world because more than half of the World’s population is dependent on it for their livelihood. Global rice production must be doubled by 2050 to cope up with the situation of population growth. Narrow genetic base in the released varieties has made the improvement in plateaus. Widening the genetic base is necessary to overcome the yield barrier. Hybridization and pre-breeding has been carried out to broaden the genetic base. Heritability and genetic advances were measured in the F5 lines (Tulaipanji × IR64), F3 lines (Tulaipanji × IR64 × PB1460), and F3 lines (Badshabhog × Swarna sub1). Some of the breeding lines were showing promising field performance with high yield potentiality. Wide crosses were performed to widen the genetic base between (Ranjit × O. rufipogon) and (Badshabhog × O. rufipogon) and the heritability pattern of the morphological characteristics in the progeny lines was evaluated. Nutritional quality of the rice grain is totally dependent on the morphology and histological characteristics of the caryopsis which are genetically determined. Caryopses ultrastructural analyses were carried out in seventeen different rice breeding lines through SEM. SEM analysis showed distinguishing ultrastructure in respect to pericarp, testa, aleurone layer, protein bodies and starchy endosperm in the breeding lines with distinctive inheritance pattern. This study provides information about the cross compatibility of the wide hybridization and heritability measures of the morphological traits which may supplement the breeding program to break the yield plateaus.
Publisher
Springer Science and Business Media LLC
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献