Author:
Chen Cancan,Zheng Shan,Guo Lei,Yang Xuebing,Song Yan,Li Zhuo,Zhu Yanwu,Liu Xiaoqi,Li Qingzhuang,Zhang Huijuan,Feng Ning,Zhao Zuxuan,Qiu Tinglin,Du Jun,Guo Qiang,Zhang Wensheng,Shi Wenzhao,Ma Jianhui,Sun Fenglong
Abstract
AbstractThe frozen section (FS) diagnoses of pathology experts are used in China to determine whether sentinel lymph nodes of breast cancer have metastasis during operation. Direct implementation of a deep neural network (DNN) in clinical practice may be hindered by misdiagnosis of the algorithm, which affects a patient's treatment decision. In this study, we first obtained the prediction result of the commonly used patch-DNN, then we present a relative risk classification and regression tree (RRCART) to identify the misdiagnosed whole-slide images (WSIs) and recommend them to be reviewed by pathologists. Applying this framework to 2362 WSIs of breast cancer lymph node metastasis, test on frozen section results in the mean area under the curve (AUC) reached 0.9851. However, the mean misdiagnosis rate (0.0248), was significantly higher than the pathologists’ misdiagnosis rate (p < 0.01). The RRCART distinguished more than 80% of the WSIs as a high-accuracy group with an average accuracy reached to 0.995, but the difference with the pathologists’ performance was not significant (p > 0.01). However, the other low-accuracy group included most of the misdiagnoses of DNN models. Our research shows that the misdiagnosis from deep learning model can be further enriched by our method, and that the low-accuracy WSIs must be selected for pathologists to review and the high-accuracy ones may be ready for pathologists to give diagnostic reports.
Funder
grant from the CAMS Initiative for Innovative Medicine
the CAMS Innovation Fund for Medical Sciences
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献