Analysis of false reasons based on the artificial intelligence RRCART model to identify frozen sections of lymph nodes in breast cancer

Author:

Zhao Zuxuan,Chen Cancan,Guan Hanwen,Guo Lei,Tian Wanxin,Liu Xiaoqi,Zhang Huijuan,Li Jiangtao,Qiu Tinglin,Du Jun,Guo Qiang,Sun Fenglong,Zheng Shan,Ma Jianhui

Abstract

Abstract Background Breast cancer is the most common malignant tumor in the world. Intraoperative frozen section of sentinel lymph nodes is an important basis for determining whether axillary lymph node dissection is required for breast cancer surgery. We propose an RRCART model based on a deep-learning network to identify metastases in 2362 frozen sections and count the wrongly identified sections and the associated reasons. The purpose is to summarize the factors that affect the accuracy of the artificial intelligence model and propose corresponding solutions. Methods We took the pathological diagnosis of senior pathologists as the gold standard and identified errors. The pathologists and artificial intelligence engineers jointly read the images and heatmaps to determine the locations of the identified errors on sections, and the pathologists found the reasons (false reasons) for the errors. Through NVivo 12 Plus, qualitative analysis of word frequency analysis and nodal analysis was performed on the error reasons, and the top-down error reason framework of “artificial intelligence RRCART model to identify frozen sections of breast cancer lymph nodes” was constructed based on the importance of false reasons. Results There were 101 incorrectly identified sections in 2362 slides, including 42 false negatives and 59 false positives. Through NVivo 12 Plus software, the error causes were node-coded, and finally, 2 parent nodes (high-frequency error, low-frequency error) and 5 child nodes (section quality, normal lymph node structure, secondary reaction of lymph nodes, micrometastasis, and special growth pattern of tumor) were obtained; among them, the error of highest frequency was that caused by normal lymph node structure, with a total of 45 cases (44.55%), followed by micrometastasis, which occurred in 30 cases (29.70%). Conclusions The causes of identification errors in examination of sentinel lymph node frozen sections by artificial intelligence are, in descending order of influence, normal lymph node structure, micrometastases, section quality, special tumor growth patterns and secondary lymph node reactions. In this study, by constructing an artificial intelligence model to identify the error causes of frozen sections of lymph nodes in breast cancer and by analyzing the model in detail, we found that poor quality of slices was the preproblem of many identification errors, which can lead to other errors, such as unclear recognition of lymph node structure by computer. Therefore, we believe that the process of artificial intelligence pathological diagnosis should be optimized, and the quality control of the pathological sections included in the artificial intelligence reading should be carried out first to exclude the influence of poor section quality on the computer model. For cases of micrometastasis, we suggest that by differentiating slices into high- and low-confidence groups, low-confidence micrometastatic slices can be separated for manual identification. The normal lymph node structure can be improved by adding samples and training the model in a targeted manner.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3