Author:
Martinez-Martinez Ricardo,Islam Molla Manjurul,Krishnaprasad Adithi,Roy Tania
Abstract
AbstractOptoelectronic synapses combine the functionalities of a non-volatile memory and photodetection in the same device, paving the path for the realization of artificial retina systems which can capture, pre-process, and identify images on the same platform. Graphene/Ta2O5/graphene phototransistor exhibits synapse characteristics when visible electromagnetic radiation of wavelength 405 nm illuminates the device. The photocurrent is retained after light withdrawal when positive gate voltage is applied to the device. The device exhibits distinct conductance states, modulated by different parameters of incident light, such as pulse width and number of pulses. The conductance state can be retained for 104 s, indicating long term potentiation (LTP), similar to biological synapses. By using optical and electrical pulses, the device shows optical potentiation and electrical LTD repeatably, implying their applicability in neural networks for pattern recognition.
Funder
Air Force Office of Scientific Research
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献