Bio-inspired “Self-denoising” capability of 2D materials incorporated optoelectronic synaptic array

Author:

Islam Molla Manjurul,Rahman Md Sazzadur,Heldmyer Haley,Han Sang Sub,Jung YeonwoongORCID,Roy TaniaORCID

Abstract

AbstractIn in-sensor image preprocessing, the sensed image undergoes low level processing like denoising at the sensor end, similar to the retina of human eye. Optoelectronic synapse devices are potential contenders for this purpose, and subsequent applications in artificial neural networks (ANNs). The optoelectronic synapses can offer image pre-processing functionalities at the pixel itself—termed as in-pixel computing. Denoising is an important problem in image preprocessing and several approaches have been used to denoise the input images. While most of those approaches require external circuitry, others are efficient only when the noisy pixels have significantly lower intensity compared to the actual pattern pixels. In this work, we present the innate ability of an optoelectronic synapse array to perform denoising at the pixel itself once it is trained to memorize an image. The synapses consist of phototransistors with bilayer MoS2 channel and p-Si/PtTe2 buried gate electrode. Our 7 × 7 array shows excellent robustness to noise due to the interplay between long-term potentiation and short-term potentiation. This bio-inspired strategy enables denoising of noise with higher intensity than the memorized pattern, without the use of any external circuitry. Specifically, due to the ability of these synapses to respond distinctively to wavelengths from 300 nm in ultraviolet to 2 µm in infrared, the pixel array also denoises mixed-color interferences. The “self-denoising” capability of such an artificial visual array has the capacity to eliminate the need for raw data transmission and thus, reduce subsequent image processing steps for supervised learning.

Funder

National Science Foundation

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near-Infrared Response Organic Synaptic Transistor for Dynamic Trace Extraction;The Journal of Physical Chemistry Letters;2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3