Nanophotonic crystals on unpolished sapphire substrates for deep-UV light-emitting diodes

Author:

Tran Tinh Binh,AlQatari Feras,Luc Quang-Ho

Abstract

AbstractA new method has been established and employed to create a random nanophotonic crystal (NPhC) structure without photolithography on the unpolished side of a single-side-polished sapphire substrate. This nano structure has potential use in enhancing the light-extraction efficiency (LEE) of deep ultraviolet light-emitting diodes (DUV-LEDs), and has never been built for DUV-LED applications before. Two mask layers in the nano scale (Au and SiO2) were used to create the NPhC and observed using scanning electron microscopy to have an average height of 400 nm and various sizes from 10 to 200 nm. Finally, a conventional DUV-LED and a DUV-LED device with NPhC were simulated using 2D Lumerical Finite-Difference Time-Domain (FDTD) for comparison. The results show that the LEE of the DUV-LED device with this NPhC integrated was significantly directly enhanced by up to 46% and 90% for TE and TM modes, respectively, compared to the conventional DUV-LED device. Thus, this NPhC is believed to be a new, key technique to enhance the LEE of DUV-LEDs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3