Heterosis for capsacinoids accumulation in chili pepper hybrids is dependent on parent-of-origin effect

Author:

Naves Emmanuel Rezende,Scossa Federico,Araújo Wagner L.,Nunes-Nesi Adriano,Fernie Alisdair R.,Zsögön Agustin

Abstract

AbstractHeterosis for agronomic traits is a widespread phenomenon that underpins hybrid crop breeding. However, heterosis at the level of cellular metabolites has not yet been fully explored. Some metabolites are highly sought after, like capsaicinoids found in peppers of theCapsicumgenus, which confer the characteristic pungent (‘hot’) flavour of the fruits. We analysed the metabolic profile of the fruit placenta and pericarp of inter- and intra-specific hybrids of two species ofCapsicumpeppers,C. chinense(cv. Habanero and cv. Biquinho) andC. annuumvar.annuum(cv. Jalapeño and cv. Cascadura Ikeda) in complete diallel crosses with reciprocals. The parents and hybrids were grown in a glasshouse and the profile of primary metabolites (sugars, amino acids and organic acids) and capsaicinoids was generated via gas chromatography–time of flight-mass spectrometry (GC–TOF-MS) and ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS), respectively. We found considerable heterotic effects specifically for capsaicinoids accumulation in the fruit placenta of the hybrids, including those derived from non-pungent parents. Furthermore, a large fraction of fruit primary metabolism was influenced by the specific cross combination, with marked parent-of-origin effects, i.e. whether a specific genotype was used as the pistillate or pollen parent. The differences in metabolite levels between the hybrids and their parents provide a snapshot of heterosis for primary and secondary metabolites and may contribute to explain the manifestation of whole-plant heterotic phenotypes.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Alexander von Humboldt-Stiftung

Max Planck Institute of Molecular Plant Physiology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3