Impact of severe hypoglycemia on the heat shock and related protein response

Author:

Atkin Alexander S.,Moin Abu Saleh Md,Nandakumar Manjula,Al-Qaissi Ahmed,Sathyapalan Thozhukat,Atkin Stephen L.,Butler Alexandra E.

Abstract

AbstractHeat shock proteins contribute to diabetes-induced complications and are affected by glycemic control. Our hypothesis was that hypoglycemia-induced heat shock and related protein changes would be amplified in type 2 diabetes (T2D). This prospective, case–control study enrolled 23 T2D patients and 23 control subjects who underwent hyperinsulinemic-induced hypoglycemia (≤ 2.0 mmol/L (36 mg/dl)) with blood sampling at baseline, at hypoglycemia and after a 24-h post-hypoglycemia follow-up period. Proteomic analysis of heat shock-related and pro-inflammatory proteins was performed. At baseline, MAPKAPK5 (p = 0.02) and UBE2G2 (p = 0.003) were elevated and STUB1 decreased (p = 0.007) in T2D. At hypoglycemia: PPP3CA (p < 0.03) was increased and EPHA2 (p = 0.01) reduced in T2D; by contrast, three proteins were reduced in controls [HSPA1A (p = 0.007), HSPB1 (p < 0.02), SMAD3 (p = 0.005)] while only MAPKAPK5 was elevated (p = 0.02). In the post-hypoglycemia follow-up period, most proteins normalized to baseline by 24-h; however, STIP1 (p = 0.003), UBE2N (p = 0.004) and UBE2L3 (p < 0.04) were decreased in controls at 24-h. No protein differed from baseline at 24-h in T2D. Pro-inflammatory interleukin-6 increased at 4-h post-hypoglycemia in controls and T2D (p < 0.05 and p < 0.003, respectively) and correlated with HSPA1A; anti-inflammatory IL-10 decreased 2-h post-hypoglycemia in T2D only. Other pro-inflammatory proteins, IL-1α, IFN-γ and TNF-α, were unchanged. Heat shock and related proteins differed at baseline between T2D and controls, with an exaggerated response of heat shock and related proteins to hypoglycemia that returned to baseline, though with changes at 24-h in controls alone. An increase in pro-inflammatory IL-6, with a decrease in anti-inflammatory IL-10, suggests that the HSP system is overactivated due to underlying inflammation in T2D.Trial registration: ClinicalTrials.gov NCT03102801.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3