RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato

Author:

Arisha Mohamed Hamed,Ahmad Muhammad Qadir,Tang Wei,Liu Yaju,Yan Hui,Kou Meng,Wang Xin,Zhang Yungang,Li Qiang

Abstract

AbstractPurple-fleshed sweet potato (PFSP) is an important food crop, as it is a rich source of nutrients and anthocyanin pigments. Drought has become a major threat to sustainable sweetpotato production, resulting in huge yield losses. Therefore, the present study was conducted to identify drought stress-responsive genes using next-generation (NGS) and third-generation sequencing (TGS) techniques. Five cDNA libraries were constructed from seedling leaf segments treated with a 30% solution of polyethylene glycol (PEG-6000) for 0, 1, 6, 12, and 48 h for second-generation sequencing. Leaf samples taken from upper third of sweet potato seedlings after 1, 6, 12, and 48 h of drought stress were used for the construction of cDNA libraries for third-generation sequencing; however, leaf samples from untreated plants were collected as controls. A total of 184,259,679 clean reads were obtained using second and third-generation sequencing and then assembled into 17,508 unigenes with an average length of 1,783 base pairs. Out of 17,508 unigenes, 642 (3.6%) unigenes failed to hit any homologs in any databases, which might be considered novel genes. A total of 2, 920, 1578, and 2,418 up-regulated unigenes and 3,834, 2,131, and 3,337 down-regulated unigenes from 1 h, 6 h, 12 h, and 48 h library were identified, respectively in drought stress versus control. In addition, after 6, 12, and 48 h of drought stress, 540 up-regulated unigenes, 486 down-regulated unigenes and 414 significantly differentially expressed unigenes were detected. It was found that several gene families including Basic Helix-loop-helix (bHLH), basic leucine zipper (bZIP), Cystein2/Histidine2 (C2H2), C3H, Ethylene-responsive transcription factor (ERF), Homo domain-leucine zipper (HD-ZIP), MYB, NAC (NAM, ATAF1/2, and CUC2), Thiol specific antioxidant and WRKY showed responses to drought stress. In total, 17,472 simple sequence repeats and 510,617 single nucleotide polymorphisms were identified based on transcriptome sequencing of the PFSP. About 96.55% of the obtained sequences are not available online in sweet potato genomics resources. Therefore, it will enrich annotated sweet potato gene sequences and enhance understanding of the mechanisms of drought tolerance through genetic manipulation. Moreover, it represents a sequence resource for genetic and genomic studies of sweet potato.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3