Higher Order Architecture of Designer Peptides Forms Bioinspired 10 nm siRNA Delivery System

Author:

Gamboa Alicia,Urfano Selina F.,Hernandez Katrina,Fraser Deborah A.,Ayalew Luladey,Slowinska KatarzynaORCID

Abstract

AbstractThe higher-order architecture observed in biological systems, like viruses, is very effective in nucleic acid transport. The replications of this system has been attempted with both synthetic and naturally occurring polymers with mixed results. Here we describe a peptide/siRNA quaternary complex that functions as an siRNA delivery system. The rational design of a peptide assembly is inspired by the viral capsids, but not derived from them. We selected the collagen peptide (COL) to provide the structural stability and the folding framework, and hybridize it with the cell penetrating peptide (CPP) that allows for effective penetration of biological barriers. The peptide/siRNA quaternary complex forms stoichiometric, 10 nm nanoparticles, that show fast cellular uptake (<30 min), effective siRNA release, and gene silencing. The complex provides capsid-like protection for siRNA against nucleases without being immunostimulatory, or cytotoxic. Our data suggests that delivery vehicles based on synthetic quaternary structures that exhibit higher-order architecture may be effective in improving delivery and release of nucleic acid cargo.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3