Solid-state fermented brewer's spent grain enzymatic extract increases in vitro and in vivo feed digestibility in European seabass

Author:

Fernandes Helena,Moyano Francisco,Castro Carolina,Salgado José,Martínez Francisca,Aznar María,Fernandes Nelson,Ferreira Patrícia,Gonçalves Margarida,Belo Isabel,Oliva-Teles Aires,Peres Helena

Abstract

AbstractBrewer’s spent grain (BSG) is the largest by-product originated from the brewery industry with a high potential for producing carbohydrases by solid-state fermentation. This work aimed to test the efficacy of a carbohydrases-rich extract produced from solid-state fermentation of BSG, to enhance the digestibility of a plant-based diet for European seabass (Dicentrarchus labrax). First, BSG was fermented with A. ibericus to obtain an aqueous lyophilized extract (SSF-BSG extract) and incorporated in a plant-based diet at increasing levels (0—control; 0.1%, 0.2%, and 0.4%). Another diet incorporating a commercial carbohydrases-complex (0.04%; Natugrain; BASF) was formulated. Then, all diets were tested in in vitro and in vivo digestibility assays. In vitro assays, simulating stomach and intestine digestion in European seabass, assessed dietary phosphorus, phytate phosphorus, carbohydrates, and protein hydrolysis, as well as interactive effects between fish enzymes and dietary SSF-BSG extract. After, an in vivo assay was carried out with European seabass juveniles fed selected diets (0—control; 0.1%, and 0.4%). In vitro digestibility assays showed that pentoses release increased 45% with 0.4% SSF-BSG extract and 25% with Natugrain supplemented diets, while amino acids release was not affected. A negative interaction between endogenous fish enzymes and SSF-BSG extract was observed in both diets. The in vivo digestibility assay corroborated in vitro data. Accordingly, the dietary supplementation with 0.4% SSF-BSG increased the digestibility of dry matter, starch, cellulose, glucans, and energy and did not affect protein digestibility. The present work showed the high potential of BSG to produce an added-value functional supplement with high carbohydrases activity and its potential contribution to the circular economy by improving the nutritional value of low-cost and sustainable ingredients that can be included in aquafeeds.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3