Experimental study of reasonable mesh size of geogrid reinforced tailings

Author:

Du Changbo,Niu Ben,Wang Laigui,Yi Fu,Liang Lidong

Abstract

AbstractCurrently, the influence of geogrid mesh size on interface characteristics are disregarded in various codes and standards. To explore the reasonable mesh size of geogrid used for reinforced tailings, the direct shear test and pull-out test of geogrid reinforced tailings with different mesh sizes were done. The results show that the shear surface of geogrid reinforced tailings is characterized by the combined action of geogrid-tailings interface and tailings-tailings interface; the geogrid-tailings interface friction was separated from the comprehensive interface friction to analyze the influence of area ratio on it under different test conditions; and the mesh size of geogrid reinforced tailings, that is, the area ratio of the geogrid-tailings interface to the shear surface (α), has a greater influence on the pseudo-cohesion and less on the pseudo-friction angle. The friction strength of the geogrid-tailings interface increases slightly with increasing mesh size, then decreases sharply, and the reinforcement effect of geogrid quickly disappears. Considering the direct shear test and pull-out test, the reasonable mesh size of geogrid reinforced tailings should be the mesh size corresponding to α 0.47–0.55. With the increase α, the effect of the geogrid reinforced tailings can be divided into four stages where the third stage ($$0.4 \le \alpha < 0.6$$ 0.4 α < 0.6 ) is the stage with the best reinforcement effect.

Funder

the first batch of "double first class" discipline construction innovation team funded by Liaoning Technical University

the youth fund of Liaoning Provincial Department of Education

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3