Study on Hydraulic Incipient Motion Model of Reinforced Tailings

Author:

Liu Kehui,Cai Hai,Jing Xiaofei,Chen Yulong,Li Lu,Wu Shangwei,Wang WensongORCID

Abstract

Once the flood overtopping accident of a reinforced tailings dam occurs, it will cause great property losses and serious environmental pollution to the downstream residents. In order to further study the microscopic characteristics of the hydraulic erosion of reinforced tailings dams, considering that the beginning of reinforced tailings particles is the basis of flooding and erosion of reinforced tailings dams, in this paper, a reinforced tailings hydraulic erosion facility was used to carry out the tailings particle start-up test with reinforcement spacing of 5.0, 2.5, 1.7, 1.3, and 1.0 cm, and the influence the law of critical incipient velocity of tailings particles with different reinforcement spacing was revealed. The test results show that, the smaller the reinforcement spacing, the larger the incipient velocity of the reinforced tailings sample. Based on the sediment incipient motion theory, it is assumed that the resistance direction of particle incipient motion is opposite to the particle motion direction. A reinforcement coefficient is introduced to establish the incipient velocity formula of reinforced tailings particles. This model can provide theoretical support for the study of the hydraulic erosion rate of a reinforced tailings dam.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading

2. Operational characteristics of tailings dams;Strawling;Foreign Met. Mines,2002

3. Statistical analysis of tailings pond accidents and cause analysis of dam failure;Wu;China Saf. Sci. J.,2014

4. Experimental study on the model of flood overtopping and dam break of a tailing pond under different deposit compactness;Dang;Mar. Geol. Front.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3