Entropy analysis for a novel peristaltic flow in a curved heated endoscope: an application of applied sciences

Author:

Nadeem Sohail,Akhtar Salman,Saleem Anber,Akkurt Nevzat,Almutairi Shahah,Ghazwani Hassan Ali,Eldin Sayed M.

Abstract

AbstractEntropy interpretation with a descriptive heat generation analysis is carried out for the heated flow between two homocentric and sinusoidally fluctuating curved tubes. A novel peristaltic endoscope is considered for the first time inside a curved tube with evaluation of heat transfer and entropy. This flexible and novel endoscope with peristaltic locomotion is more efficient for endoscopy of complex mechanical structures and it is more comfortable for patients undergoing the endoscopy of a human organs. A comprehensive mathematical model is developed that also completely evaluates the heat transfer analysis for this novel endoscope. Certain and systematic computations are performed with the help of Mathematica software and exact mathematical as well as graphical solutions are obtained. Entropy has a lower rate that is almost zero entropy in the central region of these two curved tubes, but maximum entropy is noted near the sinusoidally deformable walls of both the endoscope and channel.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3