Heat transfer analysis of a peristaltically induced creeping magnetohydrodynamic flow through an inclined annulus using homotopy perturbation method

Author:

Yadav Pramod Kumar1ORCID,Roshan Muhammad1ORCID

Affiliation:

1. Department of Mathematics Motilal Nehru National Institute of Technology Allahabad Prayagraj India

Abstract

AbstractThe present work aims to focus on the heat transfer analysis of the peristaltic flow of biviscosity fluid in an annular region between two coaxial flexible tubes with different amplitudes and phases under the influence of a radially varying magnetic field and constant rotation. In this model, the non‐Newtonian biviscosity fluid is flowing through the annulus region between the two concentric inclined tubes. The outer flexible tube is permeable and supposed to satisfy the Saffman slip condition. The governing equations for the considered problem are simplified under the assumptions of a creeping flow and long‐wavelength approximations. Semi‐analytical expressions for the axial velocity and temperature profile are obtained using the homotopy perturbation method. Here, the expressions for shear stress and stream function are also obtained. In this work, the authors discussed the impact of various flow parameters like the Hartmann number, rotation of the frame, permeability parameter, phase difference, amplitude ratios of inner and outer tubes, radius ratio, and inclination angle on the above flow variables. The streamline contour plots are also drawn for the realization of the fluid flow inside the annular endoscopic region. A noticeable result which is drawn from the present study is that phase difference and amplitude ratio are responsible for reduction and enhancement in temperature and axial velocity of the moving fluid, respectively. It is also found from the present examination that the rise in the strength of the applied magnetic field enhances the transverse fluctuations of peristaltically propagating waves. The comparison of the sinusoidal waveform with the various types of waveforms, such as triangular, trapezoidal, and square waveforms, in the case of a peristaltic endoscope is also discussed. The proposed model may give insights into designing a novel endoscope and decide whether such types of peristaltic endoscopes have exemplary implementations for surgical and mechanical purposes.

Publisher

Wiley

Reference56 articles.

1. Latham T.W.:Fluid motions in a peristaltic pump. Ph.D. thesis Massachusetts Institute of Technology(1966).http://hdl.handle.net/1721.1/17282

2. Peristaltic pumping with long wavelengths at low Reynolds number

3. Peristaltic motion of a non-Newtonian fluid

4. Numerical study on the laminar pulsatile flow of slurries;Nakamura M.;J. Non Newtonian Fluid Mech.,1987

5. Numerical study on the flow of a non‐Newtonian fluid through an axisymmetric stenosis;Nakamura M.;J. Biomech. Eng.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3