Author:
Ibba Pietro,Tronstad Christian,Moscetti Roberto,Mimmo Tanja,Cantarella Giuseppe,Petti Luisa,Martinsen Ørjan G.,Cesco Stefano,Lugli Paolo
Abstract
AbstractStrawberry is one of the most popular fruits in the market. To meet the demanding consumer and market quality standards, there is a strong need for an on-site, accurate and reliable grading system during the whole harvesting process. In this work, a total of 923 strawberry fruit were measured directly on-plant at different ripening stages by means of bioimpedance data, collected at frequencies between 20 Hz and 300 kHz. The fruit batch was then splitted in 2 classes (i.e. ripe and unripe) based on surface color data. Starting from these data, six of the most commonly used supervised machine learning classification techniques, i.e. Logistic Regression (LR), Binary Decision Trees (DT), Naive Bayes Classifiers (NBC), K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Multi-Layer Perceptron Networks (MLP), were employed, optimized, tested and compared in view of their performance in predicting the strawberry fruit ripening stage. Such models were trained to develop a complete feature selection and optimization pipeline, not yet available for bioimpedance data analysis of fruit. The classification results highlighted that, among all the tested methods, MLP networks had the best performances on the test set, with 0.72, 0.82 and 0.73 for the F$$_1$$
1
, F$$_{0.5}$$
0.5
and F$$_2$$
2
-score, respectively, and improved the training results, showing good generalization capability, adapting well to new, previously unseen data. Consequently, the MLP models, trained with bioimpedance data, are a promising alternative for real-time estimation of strawberry ripeness directly on-field, which could be a potential application technique for evaluating the harvesting time management for farmers and producers.
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献