Supervised binary classification methods for strawberry ripeness discrimination from bioimpedance data

Author:

Ibba Pietro,Tronstad Christian,Moscetti Roberto,Mimmo Tanja,Cantarella Giuseppe,Petti Luisa,Martinsen Ørjan G.,Cesco Stefano,Lugli Paolo

Abstract

AbstractStrawberry is one of the most popular fruits in the market. To meet the demanding consumer and market quality standards, there is a strong need for an on-site, accurate and reliable grading system during the whole harvesting process. In this work, a total of 923 strawberry fruit were measured directly on-plant at different ripening stages by means of bioimpedance data, collected at frequencies between 20 Hz and 300 kHz. The fruit batch was then splitted in 2 classes (i.e. ripe and unripe) based on surface color data. Starting from these data, six of the most commonly used supervised machine learning classification techniques, i.e. Logistic Regression (LR), Binary Decision Trees (DT), Naive Bayes Classifiers (NBC), K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Multi-Layer Perceptron Networks (MLP), were employed, optimized, tested and compared in view of their performance in predicting the strawberry fruit ripening stage. Such models were trained to develop a complete feature selection and optimization pipeline, not yet available for bioimpedance data analysis of fruit. The classification results highlighted that, among all the tested methods, MLP networks had the best performances on the test set, with 0.72, 0.82 and 0.73 for the F$$_1$$ 1 , F$$_{0.5}$$ 0.5 and F$$_2$$ 2 -score, respectively, and improved the training results, showing good generalization capability, adapting well to new, previously unseen data. Consequently, the MLP models, trained with bioimpedance data, are a promising alternative for real-time estimation of strawberry ripeness directly on-field, which could be a potential application technique for evaluating the harvesting time management for farmers and producers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3