Non-Destructive Detection of Golden Passion Fruit Quality Based on Dielectric Characteristics

Author:

Lin Fan1,Chen Dengjie1,Liu Cheng1,He Jincheng1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Fujian A&F University, Fuzhou 350001, China

Abstract

This study pioneered a non-destructive testing approach to evaluating the physicochemical properties of golden passion fruit by developing a platform to analyze the fruit’s electrical characteristics. By using dielectric properties, the method accurately predicted the soluble solids content (SSC), Acidity and pulp percentage (PP) in passion fruit. The investigation entailed measuring the relative dielectric constant (ε′) and dielectric loss factor (ε″) for 192 samples across a spectrum of 34 frequencies from 0.05 to 100 kHz. The analysis revealed that with increasing frequency and fruit maturity, both ε′ and ε″ showed a declining trend. Moreover, there was a discernible correlation between the fruit’s physicochemical indicators and dielectric properties. In refining the dataset, 12 outliers were removed using the Local Outlier Factor (LOF) algorithm. The study employed various advanced feature extraction techniques, including Recursive Feature Elimination with Cross-Validation (RFECV), Permutation Importance based on Random Forest Regression (PI-RF), Permutation Importance based on Linear Regression (PI-LR) and Genetic Algorithm (GA). All the variables and the selected variables after screening were used as inputs to build Extreme Gradient Boosting (XGBoost) and Categorical Boosting (Cat-Boost) models to predict the SSC, Acidity and PP in passion fruit. The results indicate that the PI-RF-XGBoost model demonstrated superior performance in predicting both the SSC (R2 = 0.9240, RMSE = 0.2595) and the PP (R2 = 0.9092, RMSE = 0.0014) of passion fruit. Meanwhile, the GA-CatBoost model exhibited the best performance in predicting Acidity (R2 = 0.9471, RMSE = 0.1237). In addition, for the well-performing algorithms, the selected features are mainly concentrated within the frequency range of 0.05–6 kHz, which is consistent with the frequency range highly correlated with the dielectric properties and quality indicators. It is feasible to predict the quality indicators of fruit by detecting their low-frequency dielectric properties. This research offers significant insights and a valuable reference for non-destructive testing methods in assessing the quality of golden passion fruit.

Funder

Fujian Province Agricultural Key Core Technology Research Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3