Temperature induced modulation of resonant Raman scattering in bilayer 2H-MoS2

Author:

Bhatnagar Mukul,Woźniak Tomasz,Kipczak Łucja,Zawadzka Natalia,Olkowska-Pucko Katarzyna,Grzeszczyk Magdalena,Pawłowski Jan,Watanabe Kenji,Taniguchi Takashi,Babiński Adam,Molas Maciej R.

Abstract

AbstractThe temperature evolution of the resonant Raman scattering from high-quality bilayer 2H-MoS$$_{2}$$ 2 encapsulated in hexagonal BN flakes is presented. The observed resonant Raman scattering spectrum as initiated by the laser energy of 1.96 eV, close to the A excitonic resonance, shows rich and distinct vibrational features that are otherwise not observed in non-resonant scattering. The appearance of 1st and 2nd order phonon modes is unambiguously observed in a broad range of temperatures from 5 to 320 K. The spectrum includes the Raman-active modes, i.e. E$$_{\text {1g}}^{2}$$ 1g 2 ($$\Gamma$$ Γ ) and A$$_{\text {1g}}$$ 1g ($$\Gamma$$ Γ ) along with their Davydov-split counterparts, i.e. E$$_{\text {1u}}$$ 1u ($$\Gamma$$ Γ ) and B$$_{\text {1u}}$$ 1u ($$\Gamma$$ Γ ). The temperature evolution of the Raman scattering spectrum brings forward key observations, as the integrated intensity profiles of different phonon modes show diverse trends. The Raman-active A$$_{\text {1g}}$$ 1g ($$\Gamma$$ Γ ) mode, which dominates the Raman scattering spectrum at T = 5 K quenches with increasing temperature. Surprisingly, at room temperature the B$$_{\text {1u}}$$ 1u ($$\Gamma$$ Γ ) mode, which is infrared-active in the bilayer, is substantially stronger than its nominally Raman-active A$$_{\text {1g}}$$ 1g ($$\Gamma$$ Γ ) counterpart.

Funder

Narodowym Centrum Nauki

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3