Raman scattering excitation in monolayers of semiconducting transition metal dichalcogenides

Author:

Zinkiewicz M.ORCID,Grzeszczyk M.,Kazimierczuk T.,Bartos M.,Nogajewski K.,Pacuski W.ORCID,Watanabe K.ORCID,Taniguchi T.ORCID,Wysmołek A.ORCID,Kossacki P.ORCID,Potemski M.,Babiński A.,Molas M. R.ORCID

Abstract

AbstractRaman scattering excitation (RSE) is an experimental technique in which the spectrum is made up by sweeping the excitation energy when the detection energy is fixed. We study the low-temperature (T = 5 K) RSE spectra measured on four high quality monolayers (ML) of semiconducting transition metal dichalcogenides (S-TMDs), i.e. MoS2, MoSe2, WS2, and WSe2, encapsulated in hexagonal BN. The outgoing resonant conditions of Raman scattering reveal an extraordinary intensity enhancement of the phonon modes, which results in extremely rich RSE spectra. The obtained spectra are composed not only of Raman-active peaks, i.e. in-plane E$${}^{{\prime} }$$ and out-of-plane A$${}_{1}^{{\prime} }$$ 1 , but the appearance of 1st, 2nd, and higher-order phonon modes is recognized. The intensity profiles of the A$${}_{1}^{{\prime} }$$ 1 modes in the investigated MLs resemble the emissions due to neutral excitons measured in the corresponding PL spectra for the outgoing type of resonant Raman scattering conditions. Furthermore, for the WSe2 ML, the A$${}_{1}^{{\prime} }$$ 1 mode was observed when the incoming light was in resonance with the neutral exciton line. The strength of the exciton-phonon coupling (EPC) in S-TMD MLs strongly depends on the type of their ground excitonic state, i.e. bright or dark, resulting in different shapes of the RSE spectra. Our results demonstrate that RSE spectroscopy is a powerful technique for studying EPC in S-TMD MLs.

Funder

Narodowe Centrum Nauki

Grantová Agentura České Republiky

MEXT | Japan Society for the Promotion of Science

European Commission

Fundacja na rzecz Nauki Polskiej

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3