Probiotics: their action against pathogens can be turned around

Author:

Gan Lian,Xu Wei-Hua,Xiong Yuanyan,Lv Zhaolin,Zheng Jianwei,Zhang Yu,Lin Jianhao,Liu Jingshu,Chen Shijun,Chen Mengqiu,Guo Qingqi,Wu Junfeng,Chen Jingjie,Su Zhenhua,Sun Jijia,He Yuhui,Liu Chuanhe,Wang Weifang,Verstraete Willy,Sorgeloos Patrick,Defoirdt Tom,Qin Qiwei,Liu Yiying

Abstract

AbstractProbiotics when applied in complex evolving (micro-)ecosystems, might be selectively beneficial or detrimental to pathogens when their prophylactic efficacies are prone to ambient interactions. Here, we document a counter-intuitive phenomenon that probiotic-treated zebrafish (Danio rerio) were respectively healthy at higher but succumbed at lower level of challenge with a pathogenic Vibrio isolate. This was confirmed by prominent dissimilarities in fish survival and histology. Based upon the profiling of the zebrafish microbiome, and the probiotic and the pathogen shared gene orthogroups (genetic niche overlaps in genomes), this consequently might have modified the probiotic metabolome as well as the virulence of the pathogen. Although it did not reshuffle the architecture of the commensal microbiome of the vertebrate host, it might have altered the probiotic-pathogen inter-genus and intra-species communications. Such in-depth analyses are needed to avoid counteractive phenomena of probiotics and to optimise their efficacies to magnify human and animal well-being. Moreover, such studies will be valuable to improve the relevant guidelines published by organisations such as FAO, OIE and WHO.

Funder

Guangdong Marine Economy Promotion Projects (MEPP) Fund

Guangdong Provincial Special Fund For Modern Agriculture Industry Technology Innovation Teams, Department of Agriculture and Rural Affairs of Guangdong Province

National Natural Science Foundation of China

National Natural Science Funds of Guangdong Province for Distinguished Young Scholar

China Agriculture Research System

Scientific Research Startup Fund of South China Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3