Effect of heat shield locations on rework-induced thermal management in ball grid array solder joint

Author:

Ismail Adlil Aizat,Bakar Maria Abu,Ehsan Abang Annuar,Jalar Azman,Burke John,Zolkefli Zol Effendi,Basiron Erwan

Abstract

AbstractThis study investigated the effectiveness of heat shield placement locations during the rework process to avoid thermal and mechanical damage to adjacent ball grid array components and their solder joints on double-sided printed circuit board assembly. Three types of heat shield placement locations were used: sample X, individual heat shield placement on adjacent components of the rework location; sample Y, a U-shaped, and sample Z, a square-shaped heat shield placed respectively at the heat source location. The dye and pull test results, infrared thermography, and temperature measurements were analysed to understand the relationship between the location of the heat shield and solder joint damage during rework. Heat shield placement at the heat source location on the reworked component can reduce the peak temperatures on the adjacent rework component locations by up to 8.18%. The peak temperatures of the centre and corner of the BGA component can be maintained below 195 °C and 210 °C, respectively to improve the adjacent rework component locations' solder joint quality by reducing solder joint damage by more than 50% solder cracks. This is useful for thermal management during rework involving high-density ball grid array component placements on double-sided printed circuit board assembly.

Funder

Western Digital via SanDisk Storage Malaysia Sdn. Bhd.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3