Identifying the origin of springs in weathered-fractured crystalline aquifers using a hydrogeophysical approach

Author:

Kouassi Kouassi Jean-MichelORCID,Lachassagne Patrick,Mangoua Oi Mangoua Jules,Sombo Abé Parfait,Dibi Brou

Abstract

AbstractOver the last few decades, important advances have been made in the development of relevant hydrogeological conceptual models for crystalline aquifers, and notably for weathered-fractured crystalline aquifers. Paradoxically and contrary to other types of aquifers, these researches never aimed at characterizing springs, the places were groundwater naturally outflows from such aquifers. With such an objective, our methodological approach consisted first of a lithological and hydrogeological description of the aquifer system based on borehole data and outcrops in a representative weathered-fractured crystalline aquifer (Daloa, Ivory Coast). Next, electrical resistivity tomography (ERT) has been used (after validating the appropriate inversion method) to provide the imagery of the weathering profile both below the plateaus and in the valleys where the springs outflow. Piezometric and river discharge data were also processed notably to determine the direction of groundwater flow. Results demonstrate unambiguously that the isalterites aquifer supplies the springs, and that the underlying fractured layer is not directly implied in this supply. ERT combined with borehole and field lithological data also shows that the lateritic formations (alloterites) present near surface below the plateaus, as well as the upper part of the isalterites, were eroded in the valleys, but not deep enough to let the fractured layer outcrop. This conceptual model for springs not only provides a basis for characterizing such complex aquifers, but also provides technical guidance for spring catchment and groundwater protection in these crystalline areas.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3