Groundwater use for irrigation – a global inventory

Author:

Siebert S.,Burke J.,Faures J. M.,Frenken K.,Hoogeveen J.,Döll P.,Portmann F. T.

Abstract

Abstract. Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha), China (19 million ha) and the USA (17 million ha). Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference50 articles.

1. Ahmed, I. and Umar, R.: Groundwater flow modelling of Yamuna-Krishni interstream, a part of central Ganga Plain Uttar Pradesh, J. Earth Syst. Sci., 118(5), 507–523, 2009.

2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy, 1998.

3. Bos, M. G. and Nugteren, J.: On irrigation efficiencies, 4th edition, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, 1990.

4. Brånvall, G., Eriksson, M., Johansson, U., Svensson, P.: Water accounts, Statistics Sweden, http://www.scb.se/statistik/_publikationer/MI0902_2000A01_BR_MI71OP0006ENG.pdf, last access: 28 May 2010, Stockholm, Sweden, 41 pp., 1999.

5. Burke, J. J.: Groundwater for irrigation: productivity gains and the need to manage hydro-environmental risk, in: Intensive use of groundwater challenges and opportunities, edited by: Llamas, R. and Custodio, E., Balkema, Abingdon, UK, 478 pp. 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3