Characterization of stress‐dependent microcrack compliance and orientation distribution in anisotropic crystalline rocks

Author:

Sayers Colin M.1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences University of Houston Houston Texas USA

Abstract

AbstractCrystalline rocks in the subsurface are of interest for geothermal energy extraction, nuclear waste storage, and, when weathered or fractured, as aquifers. Compliant discontinuities such as microcracks, cracks and fractures may nucleate and propagate due to changes in pore pressure, stress and temperature. These discontinuities may provide flow pathways for fluids and, if fracturing extends to surrounding rocks, may allow escape of fluids to neighbouring formations. Monitoring such rocks using sonic logs, passive seismic, borehole seismic and surface seismic requires understanding of the propagation of elastic waves in the presence of such discontinuities. These may have an anisotropic orientation distribution as in situ stress may be anisotropic. As crystalline rock may display intrinsic anisotropy due to foliation and the preferential orientation of anisotropic minerals, quantification of the relative importance of intrinsic and microcrack‐induced anisotropy is important. This may be achieved based on the stress sensitivity of elastic wave velocities. A method that allows both the orientation distribution of microcracks and the stress dependence of their normal and shear compliance to be estimated independently of the elastic anisotropy of the background rock is presented. Results are given for anisotropic samples of gneiss from Bukov in the Czech Republic and granite from Grimsel in Switzerland based on the ultrasonic velocity measurements of Aminzadeh et al. The microcrack orientation distribution is approximately transversely isotropic for both samples with a preferred orientation of microcrack normals perpendicular to foliation. This preferred alignment is stronger in the sample of gneiss than in the granite sample, and the normal and shear compliance of the microcracks decreases with increasing compressive stress. This occurs because the contact between opposing faces of the discontinuities grows with increasing compressive stress, and this results in a decrease in elastic anisotropy with increasing compressive stress. At low stress, the ratio of microcrack normal compliance to shear compliance is approximately 0.25 for the granite sample and 0.7 for the sample of gneiss. The normal compliance ZN for both samples decreases faster with increasing compressive stress than the shear compliance ZT, resulting in a decrease in ZN/ZT with increasing compressive stress.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3