Porosity induced by dislocation dynamics in quartz-rich shear bands of granitic rocks

Author:

Précigout Jacques,Ledoux Estelle,Arbaret Laurent,Spriet Charlotte

Abstract

AbstractThe production of micro-pores is a driving mechanism for fluids to interact with deep environment and influence rock properties. Yet, such a porosity still remains misunderstood to occur in viscous rocks and may be attributed to either grain boundary sliding (GBS), dissolution effects or sub-grain rotation. Here we focus on quartz-rich shear bands across the Naxos western granite (Aegean Sea, Greece), where we document sub-micron pores at quartz boundaries. While most of these pores are observed along grain boundaries, some of them occur at intra-grain boundaries, which excludes dissolution or GBS to produce them, but instead involves the dynamic of dislocations. We then confirm that quartz is dominated by dislocation creep with evidence of a moderate to strong lattice-preferred orientation (LPO) and numerous tilt/twist boundaries, including at the pluton margin where rocks embrittled. These features coincide with (1) randomly oriented ‘inclusion’ quartz grains along tilt/twist boundaries and (2) a partial dependency of the LPO strength on grain size. Our findings suggest that pores arise from coalescing dislocations at boundaries of rotating sub-grains, providing nucleation sites for new grains to be precipitated during plastic flow. Fluid infiltration, rock embrittlement and related implications are also expected through pores accumulation with increasing strain.

Funder

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3