Microstructural and microchemical analysis of zircon in a syenite lithic fragment from Ulleung Island volcano, South Korea

Author:

Choi Seungsoon,Yi Keewook,Jung Haemyeong,Cheong Albert Chang-sikORCID

Abstract

Abstract Background The intricate textural patterns commonly observed in metamorphosed and recrystallized zircon (ZrSiO4) underscore the crucial necessity of understanding the underlying mechanisms governing their formation to ensure accurate interpretation of the chemical and isotope data they contain. This study employed a combination of microanalytical techniques, including electron backscattered diffraction (EBSD) analysis, electron microprobe (EMP) mapping, and scanning electron microscope (SEM) imaging, to investigate the processes of formation and modification of zircon in a late Pleistocene (~ 35 ka) syenite enclosed within the Nari Tephra Formation on Ulleung Island in South Korea. Findings Under cathodoluminescence (CL), zircons within the syenite reveal dark, featureless, or oscillatory-zoned cores containing numerous inclusions of britholite. These cores are partially or entirely replaced by inward-penetrating bright-CL domains that exhibit minimal inclusion presence. Despite these changes, the external morphologies of the zircons remain largely unchanged, and the faded oscillatory zoning is preserved in the replaced regions. EMP mapping discloses amoebiform micro-domains with high Y, U, and Th concentrations within the dark-CL cores, while the bright-CL domains are relatively deficient in these trace elements. Microstructural analysis of the zircons using EBSD mapping indicates no significant misorientation between the dark-CL cores and the bright-CL rims. Deformation-related low-angle boundaries by lattice distortion are clearly observed in certain grains, cutting across the discrete SEM and EMP domains, and often aligned along submicron pore trails. Conclusions Microstructural and microchemical analyses carried out in this study establish that the zircons within the Ulleung syenite have undergone subsolidus recrystallization, a process likely influenced by the presence of fresh melts or fluids. This recrystallization process could be attributed to either coupled dissolution and reprecipitation or thermoactivated particle and defect volume diffusion due to inherent lattice strain. The subsequent deformation observed in the zircons might be a result of increased stress within the magma system after the recrystallization.

Funder

NRF

Korea Basic Science Institute

NST

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3