The Frictional‐Viscous Transition in Experimentally Deformed Granitoid Fault Gouge

Author:

Zhan W.1ORCID,Niemeijer A. R.2ORCID,Berger A.1ORCID,Nevskaya N.1ORCID,Spiers C. J.2ORCID,Herwegh M.1ORCID

Affiliation:

1. Institute of Geological Sciences University of Bern Bern Switzerland

2. Department of Earth Sciences Utrecht University Utrecht The Netherlands

Abstract

AbstractIn crustal faults dominated by granitoid gouges, the frictional‐viscous transition marks a significant change in strength constraining the lower depth limit of the seismogenic zone. Dissolution‐precipitation creep (DPC) may play an important role in initiating this transition, especially within polymineralic materials. Yet, it remains unclear to what extent DPC contributes to the weakening of granitoid gouge materials at the transition. Here we conducted sliding experiments on wet granitoid gouges to large displacement (15 mm), at an effective normal stress and pore fluid pressure of 100 MPa, at temperatures of 20–650°C, and at sliding velocities of 0.1–100 μm/s, which are relevant for earthquake nucleation. Gouge shear strengths were generally ∼75 MPa even at temperatures up to 650°C and at velocities >1 μm/s. At velocities ≤1 μm/s, strengths decreased at temperatures ≥450°C, reaching a minimum of 37 MPa at the highest temperature and lowest velocity condition. Microstructural observations showed that, as the gouges weakened, the strain localized into thin, dense, and ultrafine‐grained (≤1 μm) principal slip zones, where nanopores were located along grain contacts and contained minute biotite‐quartz‐feldspar precipitates. The stress sensitivity exponent n decreased from a large number at 20°C to ∼2.2 at 650°C at the lowest velocities. These findings suggest that high temperature, slow velocity and small grain sizes promote DPC‐accommodated granular flow over cataclastic frictional granular flow, leading to the observed weakening and strain localization. Field observations together with extrapolation suggest that DPC‐induced weakening occurs at depths of 7–20 km depending on geothermal gradient.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3