Modeling sunset yellow removal from fruit juice samples by a novel chitosan-nickel ferrite nano sorbent

Author:

Shokri Samira,Shariatifar Nabi,Molaee-Aghaee Ebrahim,Jahed Khaniki Gholamreza,Sadighara Parisa,Faramarzi Mohammad Ali

Abstract

AbstractAnalysis of food additives is highly significant in the food industry and directly related to human health. This investigation into the removal efficiency of sunset yellow as an azo dye in fruit juices using Chitosan-nickel ferrite nanoparticles (Cs@NiFe2O4 NPs). The nanoparticles were synthesized and characterized using various techniques. The effective parameters for removing sunset yellow were optimized using the response surface methodology (RSM) based on the central composite design (CCD). Under the optimum conditions, the highest removal efficiency (94.90%) was obtained for the initial dye concentration of 26.48 mg L−1 at a pH of 3.87, a reaction time of 67.62 min, and a nanoparticle dose of 0.038 g L−1. The pseudo-second-order kinetic model had a better fit for experimental data (R2 = 0.98) than the other kinetic models. The equilibrium adsorption process followed the Freundlich isotherm model with a maximum adsorption capacity of 212.766 mg g−1. The dye removal efficiency achieved for industrial and traditional fruit juice samples (91.75% and 93.24%), respectively, confirmed the method's performance, feasibility, and efficiency. The dye adsorption efficiency showed no significant decrease after five recycling, indicating that the sorbent has suitable stability in practical applications. variousThe synthesized nanoparticles can be suggested as an efficient sorbent to remove the sunset yellow dye from food products.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Avazpour, M., Seifipour, F., Abdi, J., Nabavi, T. & Zamanian-Azodi, M. Detection of dyes in confectionery products using thin-layer chromatography. Iran. J. Nutr. Sci. Food Technol. 8, 73–78 (2013).

2. Gholami, Z., Marhamatizadeh, M. H., Mazloomi, S. M., Rashedinia, M. & Yousefinejad, S. Identification of synthetic dyes in traditional juices and beverages in Shiraz, Iran. Int. J. Nutr. Sci. 6, 39–44 (2021).

3. Sadowska, B., Gawinowska, M., Sztormowska, M. & Chełmińska, M. Hypersensitivity of azo dyes in urticaria patients based on a single-blind, placebo-controlled oral challenge. Adv. Dermatol. Allergol. https://doi.org/10.5114/ada.2021.110263 (2021).

4. Martins, N., Roriz, C. L., Morales, P., Barros, L. & Ferreira, I. C. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 52, 1–15 (2016).

5. Chung, K.-T. Azo dyes and human health: A review. J. Environ. Sci. Health Part C 34, 233–261 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3