Serum d-serine accumulation after proximal renal tubular damage involves neutral amino acid transporter Asc-1

Author:

Suzuki Masataka,Gonda Yusuke,Yamada Marina,Vandebroek Arno A.,Mita Masashi,Hamase Kenji,Yasui Masato,Sasabe Jumpei

Abstract

Abstract Chiral separation has revealed enantio-specific changes in blood and urinary levels of amino acids in kidney diseases. Blood d-/l-serine ratio has been identified to have a correlation with creatinine-based kidney function. However, the mechanism of distinctive behavior in serine enantiomers is not well understood. This study was performed to investigate the role of renal tubules in derangement of serine enantiomers using a mouse model of cisplatin-induced tubular injury. Cisplatin treatment resulted in tubular damage histologically restricted to the proximal tubules and showed a significant increase of serum d-/l-serine ratio with positive correlations to serum creatinine and blood urine nitrogen (BUN). The increased d-/l-serine ratio did not associate with activity of a d-serine degrading enzyme, d-amino acid oxidase, in the kidney. Screening transcriptions of neutral amino acid transporters revealed that Asc-1, found in renal tubules and collecting ducts, was significantly increased after cisplatin-treatment, which correlates with serum d-serine increase. In vitro study using a kidney cell line showed that Asc-1 is induced by cisplatin and mediated influx of d-serine preferably to l-serine. Collectively, these results suggest that cisplatin-induced damage of proximal tubules accompanies Asc-1 induction in tubules and collecting ducts and leads to serum d-serine accumulation.

Funder

Keio University Grant-in-Aid for Encouragement of Young Medical Scientists

Moritani Scholarship Foundation

Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3