A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model

Author:

Ko Nayoung,Shim Joohyun,Kim Hyoung-Joo,Lee Yongjin,Park Jae-Kyung,Kwak Kyungmin,Lee Jeong-Woong,Jin Dong-Il,Kim Hyunil,Choi Kimyung

Abstract

AbstractPig-to-human organ transplantation is a feasible solution to resolve the shortage of organ donors for patients that wait for transplantation. To overcome immunological rejection, which is the main hurdle in pig-to-human xenotransplantation, various engineered transgenic pigs have been developed. Ablation of xeno-reactive antigens, especially the 1,3-Gal epitope (GalT), which causes hyperacute rejection, and insertion of complement regulatory protein genes, such as hCD46, hCD55, and hCD59, and genes to regulate the coagulation pathway or immune cell-mediated rejection may be required for an ideal xenotransplantation model. However, the technique for stable and efficient expression of multi-transgenes has not yet been settled to develop a suitable xenotransplantation model. To develop a stable and efficient transgenic system, we knocked-in internal ribosome entry sites (IRES)-mediated transgenes into the α 1,3-galactosyltransferase (GGTA1) locus so that expression of these transgenes would be controlled by the GGTA1 endogenous promoter. We constructed an IRES-based polycistronic hCD55/hCD39 knock-in vector to target exon4 of the GGTA1 gene. The hCD55/hCD39 knock-in vector and CRISPR/Cas9 to target exon4 of the GGTA1 gene were co-transfected into white yucatan miniature pig fibroblasts. After transfection, hCD39 expressed cells were sorted by FACS. Targeted colonies were verified using targeting PCR and FACS analysis, and used as donors for somatic cell nuclear transfer. Expression of GalT, hCD55, and hCD39 was analyzed by FACS and western blotting. Human complement-mediated cytotoxicity and human antibody binding assays were conducted on peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs), and deposition of C3 by incubation with human complement serum and platelet aggregation were analyzed in GGTA1 knock-out (GTKO)/CD55/CD39 pig cells. We obtained six targeted colonies with high efficiency of targeting (42.8% of efficiency). Selected colony and transgenic pigs showed abundant expression of targeted genes (hCD55 and hCD39). Knocked-in transgenes were expressed in various cell types under the control of the GGTA1 endogenous promoter in GTKO/CD55/CD39 pig and IRES was sufficient to express downstream expression of the transgene. Human IgG and IgM binding decreased in GTKO/CD55/CD39 pig and GTKO compared to wild-type pig PBMCs and RBCs. The human complement-mediated cytotoxicity of RBCs and PBMCs decreased in GTKO/CD55/CD39 pig compared to cells from GTKO pig. C3 was also deposited less in GTKO/CD55/CD39 pig cells than wild-type pig cells. The platelet aggregation was delayed by hCD39 expression in GTKO/CD55/CD39 pig. In the current study, knock-in into the GGTA1 locus and GGTA1 endogenous promoter-mediated expression of transgenes are an appropriable strategy for effective and stable expression of multi-transgenes. The IRES-based polycistronic transgene vector system also caused sufficient expression of both hCD55 and hCD39. Furthermore, co-transfection of CRISPR/Cas9 and the knock-in vector not only increased the knock-in efficiency but also induced null for GalT by CRISPR/Cas9-mediated double-stranded break of the target site. As shown in human complement-mediated lysis and human antibody binding to GTKO/CD55/CD39 transgenic pig cells, expression of hCD55 and hCD39 with ablation of GalT prevents an effective immunological reaction in vitro. As a consequence, our technique to produce multi-transgenic pigs could improve the development of a suitable xenotransplantation model, and the GTKO/CD55/CD39 pig developed could prolong the survival of pig-to-primate xenotransplant recipients.

Funder

the Ministry of health & welfare, Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3