Adaptive time scales in recurrent neural networks

Author:

Quax Silvan C.,D’Asaro Michele,van Gerven Marcel A. J.

Abstract

AbstractRecent experiments have revealed a hierarchy of time scales in the visual cortex, where different stages of the visual system process information at different time scales. Recurrent neural networks are ideal models to gain insight in how information is processed by such a hierarchy of time scales and have become widely used to model temporal dynamics both in machine learning and computational neuroscience. However, in the derivation of such models as discrete time approximations of the firing rate of a population of neurons, the time constants of the neuronal process are generally ignored. Learning these time constants could inform us about the time scales underlying temporal processes in the brain and enhance the expressive capacity of the network. To investigate the potential of adaptive time constants, we compare the standard approximations to a more lenient one that accounts for the time scales at which processes unfold. We show that such a model performs better on predicting simulated neural data and allows recovery of the time scales at which the underlying processes unfold. A hierarchy of time scales emerges when adapting to data with multiple underlying time scales, underscoring the importance of such a hierarchy in processing complex temporal information.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

1. Dayan, P. & Abbott, L. F. Theoretical Neuroscience (MIT Press, Cambridge, 2001).

2. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 3104–3112 (2014).

3. Mikolov, T., Yih, W. & Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 746–751 (2013).

4. Song, H. F., Yang, G. R. & Wang, X.-J. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife 6, e21492 (2017).

5. van Gerven, M. A. J. A primer on encoding models in sensory neuroscience. J. Math. Psychol. 76, 172–183 (2017).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3