SHIP: a computational framework for simulating and validating novel technologies in hardware spiking neural networks

Author:

Gemo Emanuele,Spiga Sabina,Brivio Stefano

Abstract

Investigations in the field of spiking neural networks (SNNs) encompass diverse, yet overlapping, scientific disciplines. Examples range from purely neuroscientific investigations, researches on computational aspects of neuroscience, or applicative-oriented studies aiming to improve SNNs performance or to develop artificial hardware counterparts. However, the simulation of SNNs is a complex task that can not be adequately addressed with a single platform applicable to all scenarios. The optimization of a simulation environment to meet specific metrics often entails compromises in other aspects. This computational challenge has led to an apparent dichotomy of approaches, with model-driven algorithms dedicated to the detailed simulation of biological networks, and data-driven algorithms designed for efficient processing of large input datasets. Nevertheless, material scientists, device physicists, and neuromorphic engineers who develop new technologies for spiking neuromorphic hardware solutions would find benefit in a simulation environment that borrows aspects from both approaches, thus facilitating modeling, analysis, and training of prospective SNN systems. This manuscript explores the numerical challenges deriving from the simulation of spiking neural networks, and introduces SHIP, Spiking (neural network) Hardware In PyTorch, a numerical tool that supports the investigation and/or validation of materials, devices, small circuit blocks within SNN architectures. SHIP facilitates the algorithmic definition of the models for the components of a network, the monitoring of states and output of the modeled systems, and the training of the synaptic weights of the network, by way of user-defined unsupervised learning rules or supervised training techniques derived from conventional machine learning. SHIP offers a valuable tool for researchers and developers in the field of hardware-based spiking neural networks, enabling efficient simulation and validation of novel technologies.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference111 articles.

1. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable Neurosynaptic Chip;Akopyan;IEEE Trans. Comput. Des. Integr. Circuits Syst,2015

2. Synaptic dynamics in analog VLSI;Bartolozzi;Neural Comput.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3