Study on microstructure of 42CrMo steel by ultrasonic surface rolling process

Author:

Wang Haojie,Wang Xiaoqiang,Tian Yingjian,Ling Yuanfei

Abstract

AbstractTo explore the microstructure formation mechanism of 42CrMo steel under the strengthening of ultrasonic surface rolling process (USRP), the combination of theoretical analysis and experiment was used to conduct in-depth research on USRP. Firstly, according to contact mechanics and Hertz contact theory, the calculation model of contact stress distribution and elastoplastic strain between the rolling ball and the part during USRP is obtained. Secondly, the USRP processing test was carried out by single-factor experimental design method, and the microstructure of 42CrMo steel after USRP was analyzed by LEXT OLS5100 3D laser surface topography instrument and VEGA3 tungsten filament scanning electron microscopy, which found that with an increase in static pressure, residual stress and plastic strain gradually increase, the hardness firstly increases and then decreases, while surface roughness exhibits an initial decrease followed by an increase. The results show that USRP produces violent plastic deformation inside the material under the superposition of high-frequency impact and static pressure, at the same time, it refines the grains, so as to improve the surface performance of the part and improve its fatigue resistance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3