Local-feature and global-dependency based tool wear prediction using deep learning

Author:

Yang Changsen,Zhou Jingtao,Li Enming,Wang Mingwei,Jin Ting

Abstract

AbstractEvaluation of tool wear is vital in manufacturing system, since early detections on worn-out condition can ensure workpiece quality, improve machining efficiency. With the development of intelligent manufacturing, tool wear prediction technology plays an increasingly important role. However, traditional tool wear prediction methods rely on experience and knowledge of experts and are labor-extensive. Deep learning provides an effective way to extract features of raw data and establish the mapping relationship between features and targets automatically. In this paper, a new local-feature and global-dependency based tool wear prediction method is proposed. It is a hybrid approach combining manual features with automatic features. Firstly, an enhanced CNN network is designed and applied on the transformed wavelet scalogram to learn the local single-scale specific features and multi-scale correlation features automatically. Secondly, sequence of local feature vectors combining manual features with automatic features are fed into multi-layer LSTM step by step for the global dependency. A fully connected layer is then trained to predict tool wear. Finally, two statistics are proposed to illustrate the overall prediction performance and generalization ability of the model. An experiment illustrates the effectiveness of our proposed method under multiple working conditions.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3