Clamping force prediction based on deep spatio-temporal network for machining process of deformable parts

Author:

Li Enming,Zhou Jingtao,Yang Changsen,Wang Mingwei,Zhang Shusheng

Abstract

AbstractAs an important component of the machining system, the influence of fixtures on the machining deformation of the workpiece cannot be ignored. By controlling the clamping force during the machining process is an effective means to suppress or improve the machining deformation. However, due to the dynamic coupling of part geometry, clamping method, manufacturing process and time-varying cutting forces, it is difficult to obtain accurate clamping forces, which hinders the realization of fixture-based deformation control. In this paper, the variation of clamping force is considered as the response of the joint action of cutting force and other working conditions in spatial and temporal terms, and a clamping force prediction method based on deep spatio-temporal network is proposed. The part geometry model is first parameterized based on voxels, after which the cutting forces are dynamically correlated with the clamping forces in spatial and temporal terms. Then, a convolutional network was designed to capture the spatial correlation between the working conditions such as cutting force and clamping force, and a gated recurrent cell network to capture the temporal correlation to predict the clamping force during machining. Finally, an experiment of milling a cylindrical thin-walled part illustrates the effectiveness of the proposed method.

Funder

National Key Research and Development Program of China

Science and Technology Project of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3