Author:
Chen Min,Mao Jianwei,Fu Yu,Liu Xin,Zhou Yuqing,Sun Weifang
Abstract
AbstractRapid tool wear conditions during the manufacturing process are crucial for the enhancement of product quality. As an extension of our recent works, in this research, a generic in-situ tool wear condition monitoring during the end milling process based on dynamic mode and abnormal evaluation is proposed. With the engagement of dynamic mode decomposition, the real-time response of the sensing physical quantity during the end milling process can be predicted. Besides, by constructing the graph structure of the time series and calculating the difference between the predicted signal and the real-time signal, the anomaly can be acquired. Meanwhile, the tool wear state during the end milling process can be successfully evaluated. The proposed method is validated in milling tool wear experiments and received positive results (the mean relative error is recorded as 0.0507). The research, therefore, paves a new way to realize the in-situ tool wear condition monitoring.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC