Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L.

Author:

Mutale-joan Chanda,Redouane Benhima,Najib Elmernissi,Yassine KasmiORCID,Lyamlouli Karim,Laila Sbabou,Zeroual Youssef,Hicham El Arroussi

Abstract

AbstractThe present study investigates the biostimulant effects of 18 Crude Bio-Extracts (CBEs) obtained from Microalgae and Cyanobacteria on tomato plant growth, chlorophyll content, nutrient uptake and metabolite profile. Significant root and shoot length improvement (112.65%, 53.70%); was recorded at treatment with Aphanothece sp and C. ellipsoidea CBEs respectively. Meanwhile, the highest root and shoot dry weight (DW) (34.81%, 58.69%) were obtained at treatment with Aphanothece sp. The latter also displayed the maximum uptake of Nitrogen, phosphorus and potassium, which increased by 185.17%, 119.36% and 78.04% respectively compared with non-treated plants. Principal Component Analysis (PCA) confirmed that Phosphorus and Potassium levels in roots were closely related to enhanced Root length, whereas Nitrogen and chlorophyll b were closely related to Shoot and root DW. Additionally, Gas Chromatography-mass spectrometry (GC-MS) indicated that treatment with CBEs, induced the production of a vast array of metabolites. Treated plants recorded higher accumulation of palmitic and stearic acids, which could indicate a stimulation in de novo Lipid synthesis. CBEs also triggered the accumulation of pyridine-3-carboxamide (an amide active form of vitamin B3) and Linolenic acid; one of the key precursors in the biosynthetic pathway leading to plant jasmonates. Our results are a first step towards understanding the effects of microalgal extracts on plant physiology and biochemical pathways. Further investigations on biochemical fractionation of microalgal extracts and agronomic tests of their purified bioactive compounds could be a useful principal novelty for in-depth study of CBE action mechanisms. Other useful tools include; Comparative hormone profiling of treated and non-treated plants accompanied with combined High-Throughput Plant Phenotyping, transcriptomics and metabolomics analysis.

Funder

OCP GROUP Accord spec2017

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3