Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel

Author:

Florio Jenna,Verú Laura M.,Dao Adama,Yaro Alpha S.,Diallo Moussa,Sanogo Zana L.,Samaké Djibril,Huestis Diana L.,Yossi Ousman,Talamas Elijah,Chamorro M. Lourdes,Frank J. Howard,Biondi Maurizio,Morkel Carsten,Bartlett Charles,Linton Yvonne-Marie,Strobach Ehud,Chapman Jason W.,Reynolds Don R.,Faiman Roy,Krajacich Benjamin J.,Smith Corey S.,Lehmann Tovi

Abstract

AbstractLong-distance migration of insects impacts food security, public health, and conservation–issues that are especially significant in Africa. Windborne migration is a key strategy enabling exploitation of ephemeral havens such as the Sahel, however, its knowledge remains sparse. In this first cross-season investigation (3 years) of the aerial fauna over Africa, we sampled insects flying 40–290 m above ground in Mali, using nets mounted on tethered helium-filled balloons. Nearly half a million insects were caught, representing at least 100 families from thirteen orders. Control nets confirmed that the insects were captured at altitude. Thirteen ecologically and phylogenetically diverse species were studied in detail. Migration of all species peaked during the wet season every year across localities, suggesting regular migrations. Species differed in flight altitude, seasonality, and associated weather conditions. All taxa exhibited frequent flights on southerly winds, accounting for the recolonization of the Sahel from southern source populations. “Return” southward movement occurred in most taxa. Estimates of the seasonal number of migrants per species crossing Mali at latitude 14°N were in the trillions, and the nightly distances traversed reached hundreds of kilometers. The magnitude and diversity of windborne insect migration highlight its importance and impacts on Sahelian and neighboring ecosystems.

Funder

National Institutes of Health

Florida Department of Agriculture and Consumer Services-Division of Plant Industry

U.S. Army Medical Department

United Kingdom Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3