Real-time reconstruction of high energy, ultrafast laser pulses using deep learning

Author:

Stanfield Matthew,Ott Jordan,Gardner Christopher,Beier Nicholas F.,Farinella Deano M.,Mancuso Christopher A.,Baldi Pierre,Dollar Franklin

Abstract

AbstractWe report a method for the phase reconstruction of an ultrashort laser pulse based on the deep learning of the nonlinear spectral changes induce by self-phase modulation. The neural networks were trained on simulated pulses with random initial phases and spectra, with pulse durations between 8.5 and 65 fs. The reconstruction is valid with moderate spectral resolution, and is robust to noise. The method was validated on experimental data produced from an ultrafast laser system, where near real-time phase reconstructions were performed. This method can be used in systems with known linear and nonlinear responses, even when the fluence is not known, making this method ideal for difficult to measure beams such as the high energy, large aperture beams produced in petawatt systems.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3