Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning

Author:

Fumero Giuseppe1ORCID,Batignani Giovanni12ORCID,Cassetta Edoardo1,Ferrante Carino13ORCID,Giagu Stefano1ORCID,Scopigno Tullio124

Affiliation:

1. Dipartimento di Fisica, Sapienza Università di Roma 1 , Roma, Italy

2. Istituto Italiano di Tecnologia, Center for Life Nano Science @ Sapienza 2 , Roma, Italy

3. CNR-SPIN, c/o Dipartimento di Scienze Fisiche e Chimiche, Via Vetoio, Coppito (AQ), 3 Italy

4. Istituto Italiano di Tecnologia, Graphene Labs 4 , Genova, Italy

Abstract

Noise manifests ubiquitously in nonlinear spectroscopy, where multiple sources contribute to experimental signals generating interrelated unwanted components, from random point-wise fluctuations to structured baseline signals. Mitigating strategies are usually heuristic, depending on subjective biases such as the setting of parameters in data analysis algorithms and the removal order of the unwanted components. We propose a data-driven frequency-domain denoiser based on a convolutional neural network to extract authentic vibrational features from a nonlinear background in noisy spectroscopic raw data. The different spectral scales in the problem are treated in parallel by means of filters with multiple kernel sizes, which allow the receptive field of the network to adapt to the informative features in the spectra. We test our approach by retrieving asymmetric peaks in stimulated Raman spectroscopy, an ideal test-bed due to its intrinsic complex spectral features combined with a strong background signal. By using a theoretical perturbative toolbox, we efficiently train the network with simulated datasets resembling the statistical properties and lineshapes of the experimental spectra. The developed algorithm is successfully applied to experimental data to obtain noise- and background-free stimulated Raman spectra of organic molecules and prototypical heme proteins.

Funder

Ministero dell’Università della Ricerca

Graphene Flagship

Sapienza Università di Roma

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3