Predictive ultrafast laser-induced formation of MoOx using machine learning algorithms

Author:

Cano-Lara M.1,Espinal-Jimenez A.2,Camacho-López S.3ORCID,Garcia-Granada A. A.,Rostro-Gonzalez H.

Affiliation:

1. Tecnológico Nacional de México/ITESI

2. Universidad de Guanajuato

3. Centro de Investigación Científica y de Educación Superior de Ensenada

Abstract

This research introduces an innovative methodology leveraging machine learning algorithms to predict the outcomes of experimental and numerical tests with femtosecond (fs) laser pulses on 500-nm-thick molybdenum films. The machine learning process encompasses several phases, including data acquisition, pre-processing, and prediction. This framework effectively simulates the interaction between fs laser pulses and the surface of molybdenum thin films, enabling precise control over the creation of MoO x phases. The exceptional precision of fs laser pulses in generating molybdenum oxides at localized micrometer scales is a significant advantage. In this study, we explored and evaluated 13 different machine learning methods for predicting oxide formation results. Our numerical results indicate that the extra trees (ET) and gradient boosting (GB) algorithms provide the best performance in terms of mean squared error, mean absolute error, and R-squared values: 48.44, 3.72, and 1.0 for ET and 32.25, 3.72, and 1.0 for GB. Conversely, support vector regression (SVR) and histogram gradient boosting (HGB) performed the worst, with SVR yielding values of 712.48, 15.27, and 0.163 and HGB yielding values of 434.29, 16.37, and 0.548. One of the most significant aspects of this research is that training these algorithms did not require hyperparameter optimization, and the training and validation process only needed 54 experimental samples. To validate this, we used a technique known as leave-one-out cross-validation, which is a robust validation method when the available data is limited. With this research, we aim to demonstrate the capability of machine learning algorithms in applications where data is limited due to the high cost of real experimentation, as is often the case in the field of optics.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3