Author:
Leski T. A.,Spangler J. R.,Wang Z.,Schultzhaus Z.,Taitt C. R.,Dean S. N.,Stenger D. A.
Abstract
AbstractThe design of minimum CRISPR RNA (crRNA) sets for detection of diverse RNA targets using sequence degeneracy has not been systematically addressed. We tested candidate degenerate Cas13a crRNA sets designed for detection of diverse RNA targets (Lassa virus). A decision tree machine learning (ML) algorithm (RuleFit) was applied to define the top attributes that determine the specificity of degenerate crRNAs to elicit collateral nuclease activity. Although the total number of mismatches (0–4) is important, the specificity depends as well on the spacing of mismatches, and their proximity to the 5’ end of the spacer. We developed a predictive algorithm for design of candidate degenerate crRNA sets, allowing improved discrimination between “included” and “excluded” groups of related target sequences. A single degenerate crRNA set adhering to these rules detected representatives of all Lassa lineages. Our general ML approach may be applied to the design of degenerate crRNA sets for any CRISPR/Cas system.
Funder
Defense Threat Reduction Agency
Office of Naval Research
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献